Electrical properties of an excitable epithelium
نویسندگان
چکیده
The exumbrellar epithelium of the hydromedusa, Euphysa japonica, is composed of a single layer of broad (70 micrometers), thin (1--2 micrometers) cells which are joined by gap junctions and simple appositions. Although the epithelium lacks nerves, it is excitable; electrically stimulating the epithelium initiates a propagated action potential. The average resting potential of the epithelial cells is -46 mV. The action potential, recorded with an intracellular electrode, is an all-or-nothing, positive, overshooting spike. The epithelial cells are electrically coupled. The passive electrical properties of the epithelium were determined from the decrement in membrane hyperpolarization with distance from an intracellular, positive current source. The two-dimensional space constant of the epithelium is 1.3 mm, the internal longitudinal resistivity of the cytoplasm and intercellular junctions is 196 omega cm, and the resistivity of both apical and basal cell membranes is greater than 23 k omega cm2. Although the membrane resistivity is high, the transverse resistivity of the epithelium is quite low (7.5 omega cm2), indicating that the epithelium is leaky with a large, transverse, paracellular shunt.
منابع مشابه
The effect of lead (Pb2+) on electrophysiological properties of calcium currents in F77 neuron in Helix aspersa
Ion channels are responsible for control of cell function in excitable tissues such as heart and brain and also in organs and tissues traditionally thought to be non- excitable including liver and epithelium. In the present research, the effect of lead (Pb2+) on Ca2+ -dependent action potential and currents was studied in F77 neuronal soma membrane of Helix aspersa. For this purpose, action pot...
متن کاملProteins of Excitable Membranes
Excitable membranes have the special ability of changing rapidly and reversibly their permeability to ions, thereby controlling the ion movements that carry the electric currents propagating nerve impulses. Acetylcholine (ACh) is the specific signal which is released by excitation and is recognized by a specific protein, the ACh-receptor; it induces a conformational change, triggering off a seq...
متن کاملElectrophysiological techniques in kidney micropuncture.
Electrophysiological techiniques lhave been wiclely uised for the investigation of membrane properties in excitable andl inexcitable tissues. The application of suclh metlho(ds to epitlhelia lhas been extensive, particuilarly for structures that can be mounte(d as an isolated tisstue slheet in special chambers designed to control the bathing soltutions. Witlh respect to the sttu(ly of the renal...
متن کاملPassive Models of Excitable Cells
Excitable cells show a strongly nonlinear relationship between the transmembrane potential and the membrane current. In particular, after the membrane potential reaches threshold, the membrane potential follows a stereotyped wave shape called the action potential. Nevertheless, up to about 80% of the threshold level, the membrane potential and current can be described accurately using linear, o...
متن کاملCell junctions in the excitable epithelium of bioluminescent scales on a polynoid worm: a freeze-fracture and electrophysiological study.
The bioluminescent scales of the polynoid worm Acholoe are covered by a dorsal and ventral monolayer of epithelium. The luminous activity is intracellular and arises from the ventral epithelial cells, which are modified as photocytes. Photogenic and non-photogenic epithelial cells have been examined with regard to intercellular junctions and electrophysiological properties. Desmosomes, septate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 74 شماره
صفحات -
تاریخ انتشار 1979